Контрольная работа по теме «Показательные уравнения и неравенства»учебно-методический материал по алгебре (11 класс)
a. графического метода —
6. Показательные уравнения и неравенства
Рассмотрим основные методы решения показательных уравнений.
1. Приведение обеих частей уравнения к одинаковому основанию:
2. Вынесение общего множителя за скобки.
3. Уравнения, в которых правая и левая часть не приводится к одному основанию, можно решить логарифмированием:
4. Введение новой переменной.
5. Уравнение вида , где , , , , .
6. Показательно-степенные уравнения
7. Функциональный метод.
Пример 6.1. Решить уравнение .
Пример 6.1. Решить уравнение .
Решение. Найдем предварительно ОДЗ уравнения:
Тогда на ОДЗ получим:
Оба корня принадлежат ОДЗ.
Пример 6.2. Решить уравнение .
Решение. Так как левая часть является строго убывающей функцией, то любое положительное значение эта функция принимает ровно один раз. Следовательно, уравнение имеет единственное решение. Подбором получаем, что решением уравнения является .
Пример 6.3. Решить уравнение .
Решение. Прологарифмируем уравнение по основанию 4:
Пример 6.4. Решить уравнение: .
Решение. Прологарифмируем уравнение, например, по основанию 4. Тогда:
Пример 6.5. Решить уравнение
Решение. Отметим, что
Введем замену , , тогда уравнение примет вид:
Сделаем замену: , , тогда
Переходя обратно к переменной , получаем
Пример 6.6. Решить уравнение
Решение. Проведем предварительно преобразование правой части уравнения
Тогда исходное уравнение привет вид:
6.2. Показательные неравенства
Решение показательных неравенств основывается на свойствах монотонности показательной функции . Напомним, что при функция строго возрастает, а при функция убывает.
Перечислим основные методы решения показательных неравенств.
1. Приведение обеих частей неравенства к одинаковому основанию:
2. Вынесение общего множителя за скобки.
3. Введение новой переменной.
4. Логарифмирование обеих частей неравенства по выбранному основанию.
5. Неравенства вида , где , , , , .
6. Неравенства вида
Пример 6.7. Решить неравенство .
Решение. Так как ; , то, учитывая, что основание , исходное неравенство перепишется в виде:
Пример 6.8. Решить неравенство .
Решение. Так как основание , то
Пример 6.9. Решить неравенство .
Решение. Так как основание , то
Пример 6.10. Решить неравенство .
Пример 6.11. Решить неравенство .
Пример 6.12. Решить неравенство .
Сделаем замену , , тогда исходное неравенство примет вид:
Пример 6.13. Решить неравенство
Сделаем замену: , , тогда
Пример 6.14. Решить неравенство:
Разделим обе части неравенства на , получаем .
Сделаем замену , тогда
Пример 6.15. Решить неравенство:
Решение: Исходное неравенство равносильно совокупности двух систем:
Пример 6.16. Решить неравенство:
Решим первую систему полученной совокупности:
Данная система решений не имеет.
Решим вторую систему совокупности:
Пример 6.17. Решить неравенство .
Последнее неравенство равносильно совокупности двух систем:
Сравним числа и . Так как , а , то , значит . Тогда получаем, что первая система решений не имеет, а решением второй служит промежуток .
Пример 6.18. Решить неравенство: .
Решение. Область определения неравенства определяется условием . Исходное неравенство равносильно совокупности:
Из уравнения получаем .
Так как , то первое неравенство системы можно записать в виде
Учитывая условие , получаем решение системы – промежуток . Тогда решение исходного неравенства имеет вид .
Показательные уравнения и неравенства с примерами решения
Рассмотрим уравнения, в которых переменная (неизвестное) находится в показателе степени. Например:
Уравнения такого вида принято называть показательными.
Решении показательных уравнений
При решении показательных уравнений нам будет полезно следствие из теоремы о свойствах показательной функции.
Каждому значению показательной функции соответствует единственный показатель s.
Пример:
Решение:
Согласно следствию из равенства двух степеней с одинаковым основанием 3 следует равенство их показателей. Таким образом, данное уравнение равносильно уравнению
Пример:
Решение:
а) Данное уравнение равносильно (поясните почему) уравнению
Если степени с основанием 3 равны, то равны и их показатели:
Решив это уравнение, получим
При решении каждого уравнения из примера 2 сначала обе части уравнения представили в виде степени с одним и тем же основанием, а затем записали равенство показателей этих степеней.
Пример:
Решение:
а) Данное уравнение равносильно уравнению
Решая его, получаем:
Так как две степени с одинаковым основанием 2 равны, то равны и их показатели, т. е. откуда находим
б) Разделив обе части уравнения на получим уравнение равносильное данному. Решив его, получим
При решении примера 3 а) левую часть уравнения разложили на множители. Причем за скобку вынесли такой множитель, что в скобках осталось числовое выражение, не содержащее переменной.
Пример:
Решение:
Таким образом, из данного уравнения получаем
Итак, с учетом обозначения имеем:
При решении примера 4 был использован метод введения новой переменной, который позволил свести данное уравнение к квадратному относительно этой переменной.
Пример:
Решение:
Можно заметить, что 2 — корень данного уравнения. Других корней уравнение не имеет, так как функция, стоящая в левой части уравнения, возрастающая, а функция, стоящая в правой части уравнения, убывающая. Поэтому уравнение имеет не более одного корня (см. теорему из п. 1.14).
Пример:
Решение:
Пример:
При каком значении а корнем уравнения является число, равное 2?
Решение:
Поскольку х = 2 — корень, то верно равенство
Решив это уравнение, найдем
Показательные уравнения и их системы
Показательным уравнением называется уравнение, в ко тором неизвестное входит в показатель степени. При решении показательных уравнений полезно использовать следующие тождества:
Приведем методы решения некоторых типов показательных уравнений.
1 Приведение к одному основанию.
Метод основан на следующем свойстве степеней: если две степени равны и равны их основания, то равны и их показатели, т.е. уравнения надо попытаться привести к виду . Отсюда
Пример №1
Решение:
Заметим, что и перепишем наше уравнение в виде
Применив тождество (1), получим Зх — 7 = -7х + 3, х = 1.
Пример №2
Решение:
Переходя к основанию степени 2, получим:
Согласно тождеству (2), имеем
Последнее уравнение равносильно уравнению 4х-19 = 2,5х.
2 Введение новой переменной.
Пример №3
Решение:
Применив тождество 2, перепишем уравнение как
Введем новую переменную: Получим уравнение
которое имеет корни Однако корень не удовлетворяет условию Значит,
Пример №4
Решение:
Разделив обе части уравнения на получим:
последнее уравнение запишется так:
Решая уравнение, найдем
Значение не удовлетворяет условию Следовательно,
Пример №5
Решение:
Заметим что Значит
Перепишем уравнение в виде
Корнями данного уравнения будут
III Вынесение общего множителя за скобку.
Пример №6
Решение:
После вынесения за скобку в левой части , а в правой , получим Разделим обе части уравнения на получим
Системы простейших показательных уравнений
Пример №7
Решите систему уравнений:
Решение:
По свойству степеней система уравнений равносильна следующей
системе : Отсюда получим систему
Очевидно, что последняя система имеет решение
Пример №8
Решите систему уравнений:
Решение:
По свойству степеней система уравнений равносильна следующей системе: Последняя система, в свою очередь, равносильна системе:
Умножив второе уравнение этой системы на (-2) и сложив с первым, получим уравнение —9х=-4. Отсюда, найдем Подставив полученное значение во второе уравнение, получим
Пример №9
Решите систему уравнений:
Решение:
Сделаем замену: Тогда наша система примет вид:
Очевидно, что эта система уравнений имеет решение
Тогда получим уравнения
Приближенное решение уравнений
Пусть многочлен f(х) на концах отрезка [a,b] принимает значения разных знаков, то есть . Тогда внутри этого отрезка существует хотя бы одно решение уравнения Дх)=0. Это означает, что существует такое (читается как «кси»), что
Это утверждение проиллюстрировано на следующем чертеже.
Рассмотрим отрезок содержащий лишь один корень уравнения .
Метод последовательного деления отрезка пополам заключается в последовательном разделении отрезка [a, b] пополам до тех пор, пока длина полученного отрезка не будет меньше заданной точности
- вычисляется значение f(х) выражения
- отрезок делится пополам, то есть вычисляется значение
- вычисляется значение выражения f(х) в точке
- проверяется условие
- если это условие выполняется, то в качестве левого конца нового отрезка выбирается середина предыдущего отрезка, то есть полагается, что (левый конец отрезка переходит в середину);
- если это условие не выполняется, то правый конец нового отрезка переходит в середину, то есть полагается, что b=x;
- для нового отрезка проверяется условие
- если это условие выполняется , то вычисления заканчиваются. При этом в качестве приближенного решения выбирается последнее вычисленное значение х. Если это условие не выполняется, то, переходя к пункту 2 этого алгоритма, вычисления продолжаются.
Метод последовательного деления пополам проиллюстрирован на этом чертеже:
Для нахождения интервала, содержащего корень уравнения вычисляются значения
Оказывается, что для корня данного уравнения выполнено неравенство. Значит, данное уравнение имеет хотя бы один корень, принадлежащий интервалу (-1 -А; 1+А). Для приближенного вычисления данного корня найдем целые и удовлетворяющие неравенству
Пример №10
Найдите интервал, содержащий корень уравнения
Решение:
Поделив обе части уравнения на 2 , получим,
Так как, для нового уравнения
Значит, в интервале, уравнение имеет хотя бы один корень. В то же время уравнение при не имеет ни одного корня, так как,
выполняется. Значит, корень уравнения лежит в (-2,5; 0). Для уточнения этого интервала положим Для проверим выполнение условия
Значит, уравнение имеет корень, принадлежащий интервалу (-1; 0).
Нахождение приближенного корня с заданной точностью
Исходя из вышесказанного, заключаем, что если выполнено неравенство корень уравнения принадлежит интервалу
Пусть Если приближенный
корень уравнения с точностью . Если то корень лежит в интервале если то корень лежит в интервале . Продолжим процесс до нахождения приближенного значения корня с заданной точностью.
Пример №11
Найдите приближенное значение корня уравнения с заданной точностью
Решение:
Из предыдущего примера нам известно, что корень лежит в интервале
(-1; 0). Из того, что заключаем, что корень лежит в интервале (-0,5; 0).
Так как, |(-0,25)41,5(-0,25)2+2,5(-0,25)+0,5| = |-0,046| 1. Если
Изображения графиков показательной функции подсказывают это свойство. На рисунке 27 видно, что при а > 1 большему значению функции соответствует большее значение аргумента. А на рисунке 30 видно, что при 0
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.